Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 222222
Loughborough University

Programme Specifications

Programme Specification

MEng (Hons) Aeronautical Engineering (2019 and 2020 entry)

Academic Year: 2020/21

This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if full advantage is taken of the learning opportunities that are provided.

This specification applies to delivery of the programme in the Academic Year indicated above. Prospective students reviewing this information for a later year of study should be aware that these details are subject to change as outlined in our Terms and Conditions of Study.

This specification should be read in conjunction with:

  • Summary
  • Aims
  • Learning outcomes
  • Structure
  • Progression & weighting

Programme summary

Awarding body/institution Loughborough University
Teaching institution (if different)
Owning school/department Department of Aeronautical and Automotive Engineering
Details of accreditation by a professional/statutory body
  • The Royal Aeronautical Society
  • Institution of Mechanical Engineers
Final award MEng/MEng + DIS + DIntS + DPS
Programme title Aeronautical Engineering
Programme code TTUM01
Length of programme The duration of the programme is either 8 semesters, or 10 semesters if students undertake industrial training leading to the additional award of the Diploma in Industrial Studies, Diploma in Professional Studies, or study at a University abroad leading to the award of the Diploma in International Studies. These occur between Parts B and C (Route ABICD), or Parts C and D (Route ABCID).
UCAS code H403/H402
Admissions criteria

MEng:

https://www.lboro.ac.uk/study/undergraduate/courses/a-z/aeronautical-engineering-meng/

Date at which the programme specification was published Wed, 05 Aug 2020 10:49:09 BST

1. Programme Aims

  • To supply the aeronautical industries with graduates that have a comprehensive grounding in the aeronautical engineering disciplines, who can also demonstrate that they can apply their knowledge and skills effectively to complex engineering problems and offer the potential to become leaders in their chosen field.
  • To provide a broad-based and in-depth education in topics of relevance to aeronautical engineering via an understanding of:
    • selected engineering science topics, and
    • the application of fundamental principles to engineering analysis, and
    • the design and development of complex engineering products, systems and sub-systems.
  • To maintain programme content and coverage that is up-to-date and responsive to developments in Higher Education and industry and informed by department research activities.
  • To develop the students' sense of responsibility and competence by exposure to a range of  experiences including aircraft related testing and design, opportunities for industrial training, group work with increasing student independence, individual project work and opportunities to study abroad.
  • To develop students skills in self learning, planning and communication and the ability to work independently.
  • To  produce graduates with a wide appreciation of the ethical, economic, social and environmental aspects of Aeronautical Engineering.
  • To develop the students' ability to work successfully in a group, sometimes multi-disciplinary, on open-ended engineering problems.
  • To develop the students' commitment to life-long learning and enthusiasm for Aeronautical Engineering through the provision of exciting and challenging programme content.
  • To demonstrate the importance of professional engineering and highlight the route to professional registration.

2. Relevant subject benchmark statements and other external reference points used to inform programme outcomes:

The following reference points were used in creating the programme specification: the Framework for Higher Education Qualifications (FHEQ); the Engineering subject benchmarks statement; the University Learning and Teaching Strategy; the EC (UK) Specification for Professional Engineering Competence (UK-SPEC); The Royal Aeronautical Society and the Institution of Mechanical Engineers Educational Base; our Industrial Advisory Committee.

3. Programme Learning Outcomes

3.1 Knowledge and Understanding

On successful completion of this programme, students should be able to demonstrate knowledge and understanding of:

K1   A significant number of mathematical methods, and the limitations and areas of applicability
K2   Appropriate, relevant physical scientific principles
K3   The role of IT and communications
K4   The design process and the appropriate design methodologies
K5   A broad range of engineering materials and components
K6   A significant understanding of current management and business practices
K7   The professional responsibility of an engineer and the associated ethical issues
K8   Current practices including the specific codes of practice relating to both the design  process and the
       requirements for safe operation
K9   The capabilities/limitations of computational methods and the limitations of computer based methods.
K10 Relevant specialist material at an advanced level
K11 Working on open-ended, self-managed group project work on the design of a whole vehicle.

3.2 Skills and other attributes

a. Subject-specific cognitive skills:

On successful completion of this programme, students should be able to:

C1   Understand the essential principles of aeronautical engineering and the underpinning science and
       mathematics, with an appreciation of the wider engineering context and social, economic and
       environmental implications of the modern aerospace industry.
C2   Demonstrate a comprehensive knowledge and understanding of specific, relevant mathematical and
       scientific principles and methodologies and apply them effectively in an aeronautical engineering context,
       often in a multidisciplinary, international study. Also demonstrate an appreciation of the limitations of
       analysis methods to modern aerospace applications.
C3   Demonstrate extensive knowledge and understanding of commercial aerospace processes and risks,
       management techniques, legal requirements related to the aerospace industry and the need for
       professional conduct.
b. Subject-specific practical skills:

On successful completion of this programme, students should be able to:

P1   Demonstrate the practical engineering skills to carry out technical work in both laboratories and
       workshops, use standard design/analysis software, produce design work, and work effectively in a group
       and individually on major aerospace related project work.
P2   Apply quantitative technical tools and demonstrate the ability to provide novel solutions to aeronautical
       problems, particularly in the design of aircraft.
P3   Apply key aeronautical engineering processes and data extraction methods, especially related to flight
       test data, be familiar with emerging technologies for aircraft design and analysis, use analytical methods,
       quantitative methods and relevant software in unfamiliar situations and understand the systems
       approach to solving aerospace problems.
P4   Use a wide range of knowledge to define and investigate an unfamiliar engineering problem in aircraft
       design and gas turbine design, manage the innovative creation and development of aerospace products,
       including all relevant constraints, also understand aviation customer needs and ensure end products are
       fit for purpose.
P5   Apply, under constraints, current, relevant aeronautical engineering skills, including an understanding of
       appropriate codes of practice. Also demonstrate an awareness of the limitations of techniques and show
       appreciation of likely new developments in the aerospace industry.
c. Key transferable skills:

On successful completion of this programme, students should be able to:

T1   Demonstrate skills in solving unfamiliar problems, communication, group leadership, use of general
       software and information retrieval, which act as a foundation for independent life-long learning. Also
       demonstrate the ability to develop, monitor and update both personal and group work plans.

4. Programme structure

4.1          Part A  -  Introductory Modules

4.1.1       Semester 1 and 2

(i)           COMPULSORY MODULES (total modular weight 50)

Code

Title

Modular Weight

TTA003

Thermofluids

(Sem 1: 10 credits; Sem 2: 10 credits) 

20

TTA014

Computing

(Sem 1: 5 credits; Sem 2: 5 credits) 

10

TTA206

Introduction to Aircraft Design #

(Sem 1: 5 credits; Sem 2: 5 credits) 

10

TTA208

Manufacturing, Technology and Management #

(Sem 1: 5 credits; Sem 2: 5 credits) 

10

4.1.2       Semester 1

(i)           COMPULSORY MODULES (total modular weight 30)

Code

Title

Modular Weight

MAA104

Engineering Mathematics 1

10

MPA017

Engineering Materials

10

TTA106

Aircraft Systems and Performance

10

(ii)          OPTIONAL MODULES (none)

 

4.1.3       Semester 2

(i)           COMPULSORY MODULES (total modular weight 40) 

              Note:    FOR STUDENTS COMMENCING PART A OR JOINING A COHORT COMMENCING PART A FROM 2020/21 ONWARDS.

                          TTA200 IS A COMPULSORY MODULE, AND THERE ARE NO OPTIONAL MODULES.

Code

Title

Modular Weight

MAA204

Engineering Mathematics 2

10

TTA001

Engineering Mechanics

10

TTA104

Elasticity

10

TTA200

Risk Analysis

10

 (ii)        OPTIONAL MODULES  (none)

 

4.2        Part B  -  Degree Modules

4.2.1     Semester 1 and 2

(i)          COMPULSORY MODULES (total modular weight 10) 

Code

Title

Modular Weight

TTB208

Structural Design Project #

(Sem 1: 5 credits; Sem 2: 5 credits) 

10

 

4.2.2 (a)  Semester 1               

               Note:   FOR STUDENTS COMMENCING PART A OR JOINING A COHORT COMMENCING PART A FROM 2020/21 ONWARDS.

                          TTB100 IS A COMPULSORY MODULE AND THERE ARE NO OPTIONAL MODULES.

 

(i)          COMPULSORY MODULES (total modular weight 50) 

Code

Title

Modular Weight

MAB104

Engineering Mathematics 3

10

TTB002

Dynamics and Vibration

10

TTB101

Low Speed Aerodynamics

10

TTB109

Aircraft Structural Loading

10

TTB204

Mechanics of Materials

10

TTB100

 Systems Reliability Assessment 10

 (ii)        OPTIONAL MODULES  (none)

 

4.2.2 (b)  Semester 1

               Note:   FOR STUDENTS ENTERING PART A UP TO 2018 ENTRY AND THOSE THAT ARE

                          PROCEEDING INTO PART B IN 2020/21 THE FOLLOWING APPLIES: 

 

(i)          COMPULSORY MODULES (total modular weight 50) 

Code

Title

Modular Weight

MAB104

Engineering Mathematics 3

10

TTB002

Dynamics and Vibration

10

TTB101

Low Speed Aerodynamics

10

TTB109

Aircraft Structural Loading

10

TTB204

Mechanics of Materials

10

 (ii)        OPTIONAL MODULES (total modular credit weight 10)

              Select one module to bring the total modular weight for the semester up to 65. 

 

If TTA200 was taken in Part A then TTB100 must be taken in Part B.  Therefore TTD100 must be taken in Part D.

Code

Title

Modular Weight

LANxxx

Language

10

TTB100  

Systems Reliability Assessment

10

 

4.2.3    Semester 2

 (i)         COMPULSORY MODULES (total modular weight 50) 

Code

Title

Modular Weight

TTB201

High Speed Aerodynamics 10

TTB202

Control Engineering

10

TTB203

Turbomachinery and Propulsion

10

TTB209

Fixed and Rotary Wing Aircraft Performance

10

TTB211

Electrotechnology

(# coursework depending on circumstances)

10

 (ii)         OPTIONAL MODULES (none)

 

4.3       Part I  Modules:

Diploma in Industrial Studies (DIS),

Diploma in International Studies (DIntS),

Diploma in Professional Studies (DPS)

 

Code

Title

Modular Weight

TTI001

Industrial Training Placement (DIS, non credit bearing)

120

TTI002

Overseas University Placement (DIntS, non credit bearing)

120

TTI003

DPS Industrial Training Placement (non credit bearing)

 120

 

4.3.1    Ten Semester Programme

In accordance with Regulation XI, students can undertake a placement, leading to the additional award of the Diploma in Industrial Studies or Diploma in Professional Studies, or if taken at a University overseas the Diploma in International Studies. 

Participation in a placement, or study abroad, is subject to Departmental approval and satisfactory academic performance in Parts A and B (and depending upon the route of study Part C).

  

4.4         Part C  -  Degree Modules

4.4.1      Semester 1 and 2

 (i)          COMPULSORY MODULES (total modular weight 10) 

Code

Title

Modular Weight

TTC100

Management 

(Sem 1: 5 credits; Sem 2: 5 credits) 

10

4.4.2      Semester 1

 (i)          COMPULSORY MODULES (total modular weight 10) 

Code

Title

Modular Weight

TTC067

Aircraft Stability and Flight Test #

10

(ii)        OPTIONAL MODULES  (total modular weight 40)

 

            To bring the total modular weight for the semester up to 55. 

Code

Title

Modular Weight

LANxxx

Language

10

TTC012

Spacecraft Engineering

10

TTC040

Noise Control

10

TTC050

Gas Turbine  Design 1 #

10

TTC053

Stress and Structural Analysis

10

TTC102

Introduction to Computational Fluid Dynamics

(# coursework depending on circumstances)

10

TTC103

Sensor Fusion for Intelligent Vehicles

10

 

4.4.2    Semester 2           

(ii)        OPTIONAL MODULES  (total modular weight 20 or 40 credits)

            At least one module from Group 1, to bring the total modular weight for the semester up to 65. 

            Group 1: (Design modules)

Code

Title

Modular Weight

TTC010

 Aircraft Design #

 20

TTC011

 Gas Turbine Design 2 #

 20

 

             Group 2:  Select modules to bring the total modular weight for Part C to 120.  

 

Code

Title

Modular Weight

TTC002

Finite Element Methods

10

TTC051

Aerodynamics

(# coursework depending on circumstances)

10

TTC054

Principles of Composite Materials and Structures

10

TTC057

Flight Control Systems

10

TTC201

Sound Radiation from Structures

10

UMC

Module from the University Module Catalogue, at an appropriate level.

10

            Note:  A Language may only be selected from the University Module Catalogue if language was not already taken duruing Part A or Part B.

 

4.5       Part D -  Degree Modules

4.5.1    Semester 1 and 2

(i)         COMPULSORY MODULES (total modular weight 30) 

Code

Title

Modular Weight

TTD009

Group Design Project #

(Sem 1: 15 credits; Sem 2: 15 credits) 

30

4.5.2    Semester 1

(i)         COMPULSORY MODULES (total modular weight 20) 

Code

Title

Modular Weight

TTD002

MEng Aero Project Preparation

10

TTD201

Business Model  #  10

 
Note:      If TTA200 or TTB100 was not taken in Parts A and B respectively, then TTD100 must be taken as a compulsory module instead of TTD201.

 

(ii)        OPTIONAL MODULES   (total modular weight 20)

 

Code

Title

Modular Weight

TTD006

Aerospace CFD

10

TTD014

Experimental Fluid Mechanics

10

TTD100

Advanced Reliability, Availability and Maintainability

10

TTD105

Propulsion Design For The Environment

10

TTD106

Autonomous Vehicles

10

LANXXX

Language

10

 

4.5.3    Semester 2

(i)         COMPULSORY MODULES (total modular weight 50) 

Code

Title

Modular Weight

TTD001

MEng Aero Project #

50

5. Criteria for Progression and Degree Award

5.1.1 For students commencing Part A or joining a cohort commencing Part A FROM 2019/20 ONWARDS, in order to progress from Part A to Part B, from Part B to C, from C to D and to be eligible for the award of an Honours degree, candidates must not only satisfy the minimum credit requirements set out in Regulation XX but also:

  • Accumulate a minimum of 120 credits from the Part.
  • Achieve a minimum overall average for the Part of 55%.  

5.2 Subject to the exception specified below, provision will be made in accordance with Regulation XX for candidates who have the right of re-assessment to undergo re-assessment in the University's Special Assessment Period (SAP) (unless SAP exemption [marked #] is involved). 

5.2.1 Where a candidate has accumulated fewer than 60 credits in a Part of a Programme, reassessment in the relevant Part is not available to that candidate in the Special Assessment Period.

5.2.2 If following reassessment a candidate fails to meet the requirements for progression from Part C to Part D, he/she may be eligible for the award of B.Eng, provided the candidate takes, in addition, Project modules (TTC003 & TTC005); and accumulates at least 80 credits from Part C, including Aircraft Stability and Flight Test (TTC067) and one of the following design modules: Aircraft Design (TTC010) or Gas Turbine Design 2 (TTC011) and least 30% in all remaining modules. The average percentage marks for each Part will then be combined in the (BEng) ratio Part B: 33.3 Part C: 66.7 to determine the Final Programme Mark.

5.2.3 Any candidate who fails to qualify for the award of the Extended Honours Degree in Part D may, at the discretion of the Examiners, be awarded a B.Eng in Aeronautical Engineering with a classification based on the candidate’s performance in Parts B and C, together with a Project using modular weightings appropriate to the B.Eng Programme.

 

6. Relative Weighting of Parts of the Programme for the Purposes of Final Degree Classification

 

6. Degree Classification

Candidates' overall degree classification will be determined on the basis of their performance in degree level Module Assessments in Parts B, C and D in accordance with Regulation XX. The average percentage marks on each part will be combined in the (MEng) ratio (Part B 15: Part C 40: Part D 45) to determine the Final Programme Mark.

 

Related links

Prospective students

Image of a University homepage screengrab

Information on studying at Loughborough University, including course information, facilities, and student experience.

Find out more »

Decorative

How to print a Programme Specification

1. Select programme specification
2. Save specification as a PDF
3. Print PDF