Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 222222
Loughborough University

Programme Specifications

Programme Specification

MEng (Hons) Automotive Engineering (Entry prior to 2019)

Academic Year: 2020/21

This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if full advantage is taken of the learning opportunities that are provided.

This specification applies to delivery of the programme in the Academic Year indicated above. Prospective students reviewing this information for a later year of study should be aware that these details are subject to change as outlined in our Terms and Conditions of Study.

This specification should be read in conjunction with:

  • Summary
  • Aims
  • Learning outcomes
  • Structure
  • Progression & weighting

Programme summary

Awarding body/institution Loughborough University
Teaching institution (if different)
Owning school/department Department of Aeronautical and Automotive Engineering
Details of accreditation by a professional/statutory body
  • Institution of Mechanical Engineers
Final award MEng/MEng + DIS + DIntS + DPS
Programme title Automotive Engineering
Programme code TTUM02
Length of programme The duration of the programme is either 8 semesters, or 10 semesters if students undertake industrial training leading to the additional award of the Diploma in Industrial Studies or Diploma in Professional Studies, or study at a University abroad leading to the award of the Diploma in International Studies. These can occur between Parts B and C (Route ABICD), or Parts C and D (Route ABCID).
UCAS code H343/H342
Admissions criteria

MEng:

https://www.lboro.ac.uk/study/undergraduate/courses/a-z/automotive-engineering-meng/

Date at which the programme specification was published Wed, 05 Aug 2020 10:49:25 BST

1. Programme Aims

  • To supply the automotive industries with graduates that have a comprehensive grounding in the automotive engineering disciplines, who can also demonstrate that they can apply their knowledge and skills effectively to complex engineering problems and offer the potential to become leaders in their chosen field.
  • To provide a broad-based and in-depth education in topics of relevance to automotive engineering via an understanding of:
    • selected engineering science topics, and
    • the application of fundamental principles to engineering analysis, and
    • the design and development of complex engineering products, sub-systems and systems.
  • To maintain programme content and coverage that is up-to-date and responsive to developments in Higher Education and industry and informed by department research activities.
  • To develop the students' sense of responsibility and competence by exposure to a range of experiences including whole vehicle testing and design, opportunities for industrial training, group work, independent group work, individual project work and opportunities to study abroad.
  • To develop students skills in self learning, planning and communication and the ability to work independently.
  • To produce graduates with a wide appreciation of the ethical, economic, social and environmental aspects of Automotive Engineering.
  • To develop the students' ability to work successfully in a group, sometimes multi-disciplinary, on open-ended engineering problems.
  • To develop the students' commitment to life-long learning and enthusiasm for the relevant engineering discipline through the provision of exciting and challenging programme content.
  • To demonstrate the importance of professional engineering and highlight the route to professional registration.

2. Relevant subject benchmark statements and other external reference points used to inform programme outcomes:

The following reference points were used in creating the programme specification:

The Framework for Higher Education Qualifications (FHEQ); the Engineering subject benchmarks statement; the University Learning and Teaching Strategy; the EC (UK) Specification for Professional Engineering Competence (UK-SPEC); The Institution of Mechanical Engineers Educational Base; our Industrial Advisory Committee.

3. Programme Learning Outcomes

3.1 Knowledge and Understanding

On successful completion of this programme, students should be able to demonstrate knowledge and understanding of:

K1   A significant number of mathematical methods, the limitations and areas of applicability
K2   Appropriate, relevant physical scientific principles
K3   The role of IT and communications
K4   The design process and the appropriate design methodologies
K5   A broad range of engineering materials and components
K6   A significant understanding of current management and business practices
K7   The professional responsibility of an engineer and the associated ethical issues
K8   Current practices including the specific codes of practice relating to both the design process and the  
       requirements for safe operation
K9   The capabilities/limitations of computational methods and the limitations of computer-based methods.
K10 Relevant specialist material at an advanced level.
K11 Working on open-ended, self-managed group project work on the design of a whole vehicle.

3.2 Skills and other attributes

a. Subject-specific cognitive skills:

On successful completion of this programme, students should be able to:

C1   Understand the essential principles of automotive engineering and the underpinning science and
       mathematics, with an appreciation of the wider engineering context and social, economic and
       environmental implications of the modern automotive industry.
C2   Demonstrate a comprehensive knowledge and understanding of specific, relevant mathematical and
       scientific principles and methodologies and apply them effectively in an automotive engineering context,
       often in a multidisciplinary, international study. Also demonstrate an appreciation of the limitations of
       analysis methods to modern automotive applications.
C3   Demonstrate extensive knowledge and understanding of commercial automotive processes and risks,
       management techniques, legal requirements related to the automotive industry and the need for
       professional conduct.
b. Subject-specific practical skills:

On successful completion of this programme, students should be able to:

P1   Demonstrate the practical engineering skills to carry out technical work in both laboratories and
       workshops, use standard design/analysis software, produce design work, and work effectively in a group
       and individually on major automotive related project work.
P2   Apply quantitative technical tools and demonstrate the ability to provide novel solutions to automotive
       problems, particularly in the design of road vehicles.
P3   Apply key automotive engineering processes and data extraction methods, especially related to vehicle
       test data, be familiar with emerging technologies for vehicle design and analysis, use analytical methods,
       quantitative methods and relevant software in unfamiliar situations and understand the systems
       approach to solving automotive problems.
P4   Use a wide range of knowledge to define and investigate an unfamiliar engineering problem in vehicle
       design and engine design, manage the innovative creation and development of automotive products,
       including all relevant constraints, also understand customer needs and ensure end products are fit for
       purpose.
P5   Apply, under constraints, current, relevant automotive engineering skills, including an understanding of
       appropriate codes of practice. Also demonstrate an awareness of the limitations of techniques and show
       appreciation of likely new developments in the automotive industry.
c. Key transferable skills:

On successful completion of this programme, students should be able to:

T1   Demonstrate skills in solving unfamiliar problems, communication, group leadership, use of general
       software and information retrieval, which act as a foundation for independent life-long learning. Also
       demonstrate the ability to develop, monitor and update both personal and group work plans.

4. Programme structure

4.1       Part A  -  Introductory Modules

4.1.1    Semester 1 and 2

(i)         COMPULSORY MODULES (total modular weight 50)

Code

Title

Modular Weight

TTA003

Thermofluids

(Sem 1: 10 credits; Sem 2: 10 credits) 

20

TTA014

Computing

(Sem 1: 5 credits; Sem 2: 5 credits) 

10

TTA207

Vehicle Systems and Design

(#Depending on circumstances)

(Sem 1: 10 credits; Sem 2: 10 credits) 

20

4.1.2    Semester 1

(i)         COMPULSORY MODULES (total modular weight 30)

Code

Title

Modular Weight

MAA104

Engineering Mathematics 1

10

MPA017

Engineering Materials

10

TTA107

Vehicle Design and Development

(# Depending on circumstances)

10

(ii)        OPTIONAL MODULES (none)

 

4.1.3    Semester 2

(i)         COMPULSORY MODULES (total modular weight 30)

Code

Title

Modular Weight

MAA204

Engineering Mathematics 2

10

TTA001

Engineering Mechanics

10

TTA104

Elasticity

10

 

(ii)        OPTIONAL MODULES  (total modular weight 10)

Select one module to bring the total modular weight for Part A to 120.

If TTA200 is selected then TTB100 must be taken at Part B.

If a Language is taken, then TTD100 must be taken in Part D.

Code

Title

Modular Weight

LANxxx

Language

10

TTA200  

Risk Analysis

10

 

4.2       Part B  -  Degree Modules

4.2.1    Semester 1 and 2

(i)         COMPULSORY MODULES (total modular weight 30)

Code

Title

Modular Weight

TTB208

Structural Design Project #

(Sem 1: 5 credits; Sem 2: 5 credits) 

10

TTB210

Advanced Powertrain Systems

(Sem 1: 10 credits; Sem 2: 10 credits) 

20

4.2.2    Semester 1 

(i)         COMPULSORY MODULES (total modular weight 40)

Code

Title

Modular Weight

MAB104

Engineering Mathematics 3

10

TTB002

Dynamics and Vibration

10

TTB204

Mechanics of Materials

10

TTB207

Machine Elements and Automotive Materials

10

 

(ii)        OPTIONAL MODULES  (total modular weight 10)

Select one module to bring the total modular weight for the semester up to 65.

Code

Title

Modular Weight

LANxxx

Language Module

10

TTB100     

Systems Reliability Assessment

10

 

4.2.3    Semester 2

(i)        COMPULSORY MODULES (total modular weight 40)

Code

Title

Modular Weight

TTB039

Ground Vehicle Aerodynamics

10

TTB107

Vehicle Loading and Suspensions

10

TTB202

Control Engineering

10

TTB211

Electrotechnology

(# coursework depending on circumstances)

10

(ii)        OPTIONAL MODULES (none) 

 

4.3       Part I Modules:

Diploma in Industrial Studies (DIS)

Diploma in International Studies (DIntS) 

Diploma in Professional Studies Modules (DPS) 

Code

Title

Modular Weight

TTI001

Industrial Training Placement

(DIS, non credit bearing)

120

TTI002

Overseas University Placement

(DIntS, non credit bearing)

120

TTI003

      DPS Industrial Training Placement

      (non credit bearing)

 120

 

4.3.1    Ten Semester Programme

In accordance with Regulation XI, students can undertake a placement, leading to the additional award of the Diploma in Industrial Studies or Diploma in Professional Studies, or if taken at a University overseas the Diploma in International Studies. 

Participation in a placement, or study abroad, is subject to Departmental approval and satisfactory academic performance in Parts A and B (and depending upon the route of study Part C).

 

4.4       Part C  -  Degree Modules

4.4.1    Semester 1 and 2

(i)         COMPULSORY MODULES (total modular weight 50)

Code

Title

Modular Weight

TTC100

Management

(Sem 1: 5 credits; Sem 2: 5 credits) 

10

TTC101

Vehicle Concept Definition and Design #

(Sem 1: 20 credits; Sem 2: 20 credits) 

40

 

4.4.2    Semester 1 

(i)         COMPULSORY MODULES (as listed in 4.4.1) 

(ii)        OPTIONAL MODULES (total modular weight 30 or 40)

 

Code

Title

Modular Weight

LANxxx

Language

10

TTC040

Noise Control

10

TTC053

Stress and Structural Analysis

10

TTC066

Vehicle Dynamics and Simulation

10

TTC102

Introduction to Computational Fluid Dynamics

(# coursework depending on circumstances)

10

TTC103

Sensor Fusion for Intelligent Vehicles

10

 

4.4.3    Semester 2

(i)         COMPULSORY MODULES (as listed in 4.4.1)  

(ii)        OPTIONAL MODULES (total modular weight 30 or 40)

            To bring the total modular weight for the Part C to 120 credits.

Code

Title

Modular Weight

TTC002

Finite Element Methods

10

TTC054

Principles of Composite Materials and Structures 

10

TTC064

Vehicle Engine Analysis

10

TTC068

Crashworthiness

10

TTC201

Machine Intelligence

10

TTC202

Battery Technology

10

UMC

Module from the University Module Catalogue, at an appropriate level

10

Note:  A Language may only be selected from the University Module Catalogue, if language wast not already taken during Part A or Part B. 

 

4.5       Part D -  Degree Modules

4.5.1    Semester 1 and 2

(i)         COMPULSORY MODULES (total modular weight 20)

Code

Title

Modular Weight

TTD003

Automotive Group Project # 

(Sem 1: 10 credits; Sem 2: 10 credits) 

20

4.5.2    Semester 1

(i)         COMPULSORY MODULES (total modular weight 20)

Code

Title

Modular Weight

TTD012

MEng Auto Project Preparation

10

TTD201

Business Model #

10

++TTD100

Advanced Reliability, Availability and Maintainability

10

 

++ If TTA200 or TTB100 was not taken in Parts A and B respectively, then TTD100 must be taken as a compulsory module instead of TTD201.

 

(ii)        OPTIONAL MODULES (total modular weight 30)

 

Code

Title

Modular Weight

TTD014

Experimental Fluid Mechanics

10

TTD017

Vehicle Handling

10

TTD100

Advanced Reliability, Availability and Maintainability

10

TTD101

Vehicle Energy Technology  ??

10

TTD106

Autonomous Vehicles

10

LANxxx

Language

10

 

4.5.3    Semester 2

(i)         COMPULSORY MODULE (total modular weight 50)

Code

Title

Modular Weight

TTD010

MEng Auto Project #

50

 

(ii)        OPTIONAL MODULE (none) 

The total modular weight for Part D is 120 credits.

5. Criteria for Progression and Degree Award

5.1.1 For students commencing Part A or joining a cohort commencing Part A up to 2018 Entry, in order to progress from Part A to Part B, from Part B to C, from C to D and to be eligible for the award of an Honours degree, candidates must not only satisfy the minimum credit requirements set out in Regulation XX but also:

  • In order to progress from Part A to Part B, candidates must accumulate at least 100 credits from Part A together with at least 30% in all remaining modules.
  • In order to progress from Part B to Part C, candidates must accumulate at least 100 credits from Part B and a minimum overall average for Part B of 55% with at least 30% in all remaining modules.
  • In order to progress from Part C to Part D, candidates must accumulate at least 100 credits from Part C and a minimum overall average for Part C of 55%, with at least 30% in all remaining modules.
  • In order to qualify for the award of the Degree, candidates must accumulate at least 100 credits at Part D with at least 30% in all remaining modules. 

 

5.2 Subject to the exception specified below, provision will be made in accordance with Regulation XX for candidates who have the right of re-assessment to undergo re-assessment in the University's Special Assessment Period (SAP) (unless SAP exemption [marked #] is involved).

  • Where a candidate accumulates fewer than 60 credits in a Part of a programme, reassessment in the relevant Part is not available to that candidate in the Special Assessment Period.
  • If following reassessment a candidate fails to meet the requirements for progression from Part C to Part D, he/she may be eligible for the award of B.Eng provided the candidate takes, in addition, Project modules TTC001 and TTC007, and accumulates at least 80 credits from Part C and at least 30% in all remaining modules. The average percentage marks for each Part will be combined in the (BEng) ratio Part B: 33.3 : Part C: 66.7 to determine the Final Programme Mark. 
  • Any candidate who fails to qualify for the award of the Extended Honours Degree in Part D may, at the discretion of the Examiners, be awarded a B.Eng in Automotive Engineering with a classification based on the candidate’s performance in Parts B and C, together with a Project using modular weightings appropriate to the B.Eng Programme.

6. Relative Weighting of Parts of the Programme for the Purposes of Final Degree Classification

Candidates' overall degree classification will be determined on the basis of their performance in degree level Module Assessments in Parts B, C and D in accordance with the scheme set out in Regulation XX.  The average percentage marks on each Part will be combined in the (MEng) ratio (Part B 15: Part C 40: Part D 45) to determine the Final Programme Mark.

Related links

Prospective students

Image of a University homepage screengrab

Information on studying at Loughborough University, including course information, facilities, and student experience.

Find out more »

Decorative

How to print a Programme Specification

1. Select programme specification
2. Save specification as a PDF
3. Print PDF