Programme Specification
MEng (Hons) Electronic and Computer Systems Engineering (Students undertaking Part D in 2019)
Academic Year: 2019/20
This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if full advantage is taken of the learning opportunities that are provided.
This specification applies to delivery of the programme in the Academic Year indicated above. Prospective students reviewing this information for a later year of study should be aware that these details are subject to change as outlined in our Terms and Conditions of Study.
This specification should be read in conjunction with:
- Reg. XX (Undergraduate Awards) (see University Regulations)
- Module Specifications
- Summary
- Aims
- Learning outcomes
- Structure
- Progression & weighting
Programme summary
Awarding body/institution | Loughborough University |
Teaching institution (if different) | |
Owning school/department | Wolfson School of Mechanical, Electrical and Manufacturing Engineering |
Details of accreditation by a professional/statutory body | Institution of Engineering and Technology (IET)
|
Final award | MEng/ MEng + DIS/ MEng + DIntS |
Programme title | Electronic and Computer Systems Engineering |
Programme code | WSUM30 |
Length of programme | The duration of the programme is 8 semesters or 10 semesters if taken with either the Diploma in Industrial Studies (DIS) or the Diploma in International Studies (DIntS). The programme is only available on a full-time basis. |
UCAS code | H612, H613 |
Admissions criteria | http://www.lboro.ac.uk/study/undergraduate/courses/electronic-computer-systems-engineering/ |
Date at which the programme specification was published | Mon, 12 Aug 2019 15:37:16 BST |
1. Programme Aims
To meet the aims of the MEng programme in Electronic and Computer Systems Engineering and to further enhance a student’s learning experience by providing a high quality educational experience, for well motivated high achievers, that:
- A1. increases the depth and breadth of technical study to the level expected of Masters level graduates;
- A2. develops knowledge and skills, to a depth and breadth expected of Masters level graduates, as a preparation for a career in the electronic and electrical engineering industry;
- A3. develops an enhanced capacity for independent learning, planning and self–reliance;
- A4. enhances teamwork and leadership skills, equipping graduates of the programme to play leading roles in industry and potentially take responsibility for future innovation and change
2. Relevant subject benchmark statements and other external reference points used to inform programme outcomes:
UK Standard for Professional Engineering Competence: Engineering Technician, Incorporated Engineer and Chartered Engineer Standard, Engineering Council UK, 3rd edition, 2013.
UK Standard for Professional Engineering Competence: The Accreditation of Higher Education Programmes, Engineering Council UK, 3rd edition, 2014.
Guidance Note on Academic Accreditation, Engineering Council UK, July 2014.
The UK Quality Code for Higher Education, The Quality Assurance Agency for Higher Education, April 2012.
Subject Benchmark Statement: Engineering: The Quality Assurance Agency for Higher Education, November 2010.
Master's Degree Characteristics, The Quality Assurance Agency for Higher Education, March 2010.
3. Programme Learning Outcomes
3.1 Knowledge and Understanding
On successful completion of this programme, students should be able to demonstrate a knowledge and understanding of:
- K1. mathematical methods appropriate to electronic and electrical engineering and related disciplines, including their limitations and range of applicability
- K2. principles of engineering appropriate to electronic and electrical engineering and related disciplines, including their range of applicability;
- K3. principles of Information Technology and Communications appropriate to electronic and electrical engineering and related disciplines;
- K4. design principles and techniques appropriate to relevant components, equipment and associated software;
- K5. characteristics of relevant engineering components;
- K6. management and business practices appropriate to engineering industries, their application and limitations;
- K7. codes of practice and regulatory frameworks relevant to electronic and electrical engineering and related disciplines;
- K8. operational practices and requirements for safe operation relevant to electronic and electrical engineering and related disciplines;
- K9. the professional and ethical responsibilities of engineers;
- K10. team roles, team-working skills and leadership skills;
- K11. relevant research methods.
3.2 Skills and other attributes
a. Subject-specific cognitive skills:
On successful completion of this programme, students should be able to demonstrate:
- C1. an understanding of standard mathematical and computer based methods for modelling and analysing a range of practical and hypothetical engineering problems, and the essential principles of modelling and analysing routine engineering systems, processes, components and products;
- C2. an ability to develop innovative solutions to practical engineering problems;
- C3. a competence in defining and solving practical engineering problems;
- C4. the ability to apply engineering processes in a range practical contexts.
b. Subject-specific practical skills:
On successful completion of this programme, students should be able to:
- P1. use appropriate or novel mathematical methods for modelling and analysing pertinent engineering problems;
- P2. select and use relevant test and measurement equipment;
- P3. plan and execute safely novel or unfamiliar experimental laboratory work;
- P4. select and use computational tools and packages (including programming languages where appropriate);
- P5. design, and where appropriate construct, new systems, components or processes;
- P6. undertake testing of design ideas in the laboratory or by simulation, and analyse and critically evaluate the results;
- P7. search for, retrieve and evaluate information, ideas and data from a variety of sources;
- P8. manage a project and produce technical reports, papers, diagrams and drawings at an appropriate level.
c. Key transferable skills:
On successful completion of this programme, students should be able to:
- T1. manipulate, sort and present data in a range of forms;
- T2. use evidence based methods in the solution of complex problems;
- T3. work with limited, incomplete and/or contradictory information in the solution of unfamiliar problems;
- T4. use an engineering and/or systems approach to the solution of problems in unfamiliar situations;
- T5. be creative and innovative in problem solving;
- T6. work effectively as part of a team and show potential for leadership;
- T7. use a wide range of information and communications technology;
- T8. manage time and resources;
- T9. use appropriate management tools;
- T10. communicate effectively orally, visually and in writing at an appropriate level;
- T11. learn effectively, continuously and independently in a variety of environments.
4. Programme structure
These Programme Specifications apply to the conduct of the programme in the 2018-19 session and should not be construed as being relevant to any other session. These Programme Specifications may be subject to change from time to time. Notice of change will be given by the School responsible for the programme.
In the following tables, ‘c’ indicates a compulsory module and ‘o’ indicates an optional module. The optional modules ‘oA’, ‘oB’, ‘oC’ and ‘oD’ should be considered along with the text following the table in which they appear.
Modules indicated as being taught in both Semester 1 and Semester 2 have elements of assessment in each semester however examinations for these modules normally occur during the Semester 2 examination period. Modules indicated as being taught in a single semester are assessed entirely within that semester.
4.1 Part A - Introductory Modules
Code | Title | Weight | Semester | C/O |
ELA005 | Electromagnetism A | 10 | 2 | C |
ELA004 | Signals and Systems | 20 | 1+2 | C |
ELA007 | Introduction to Systems Engineering for Projects | 20 | 1+2 | C |
MAA303 | Mathematics A | 20 | 1+2 | C |
ELA001 | Circuits | 20 | 1+2 | C |
ELA003 | Electronics A | 20 | 1+2 | C |
ELA010 | Programming and Software Design | 20 | 1+2 | C |
The 20 credit module ELA001 Circuits is taught over both semesters, 2/3 of the module is taught in Semester 1 and 1/3 in Semester 2.
4.2 Part B - Degree Modules
Code | Title | Weight | Semester | C/O |
ELB014 | Software Engineering | 15 | 1+2 | C |
ELB019 | Computer Architecture | 15 | 1+2 | C |
ELB020 | Introduction to FPGA Design | 15 | 1+2 | C |
ELB010 | Electronics B | 20 | 1+2 | C |
MAB303 | Mathematics B | 20 | 1+2 | C |
ELB006 | Systems Integration | 20 | 1+2 | OA |
ELB013 | Engineering Project Management | 20 | 1+2 | OA |
ELB002 | Communications | 15 | 1+2 | OB |
ELB004 | Control Systems Design | 15 | 1+2 | OB |
Students should take one of the optional modules marked oA and one marked oB.
4.3 Part C - Degree Modules
Code | Title | Weight | Semester | C/O |
ELC008 | Business Management | 15 | 1+2 | C |
ELC018 | Real-Time Software Engineering | 15 | 1+2 | C |
ELC054 | Electronic System Design with FPGAs | 15 | 1+2 | C |
ELC055 | Digital Interfacing and Instrumentation | 15 | 1+2 | C |
ELD002 | Group Project | 30 | 1+2 | C |
ELB002 | Communications | 15 | 1+2 | OA |
ELB004 | Control System Design | 15 | 1+2 | OA |
ELC002 | Principles of Digital Communications | 15 | 1+2 | OB |
ELC004 | Computer Networks | 15 | 1+2 | OB |
ELC013 | Electromagnetic Compatibility | 15 | 1+2 | OB |
ELC014 | Biophotonics Engineering | 15 | 1+2 | OB |
ELC030 | Bioelectricity - Fundamentals and Applications | 15 | 1+2 | OB |
ELC039 | Microwave Communication Systems | 15 | 1+2 | OB |
ELC041 | Digital and State Space Control | 15 | 1+2 | OB |
ELC056 | Fundamentals of Digital Signal Processing | 15 | 1+2 | OB |
DSC502 | Human Factors in Systems Design | 15 | 1+2 | OB |
MPC022 | Materials Properties and Applications | 15 | 1+2 | OB |
XXXXXX | Options from the University Catalogue |
30 |
1+2 | OC |
Option modules with a total weight of 30 credits should be chosen.
Options listed as oA will normally continue to be delivered throughout the Semester 1 examination period, while options listed as oB will normally be suspended during the Semester 1 examination period. Modules marked oA may only be chosen if they were not taken at Part B.
The option oC allows a free choice of modules worth 30 credits from the University Catalogue. This choice should be restricted to modules from Part C or D level, subject to the overall requirement for the Part that at least 90 credits should be from Part D level or above. The total of 120 credits should be arranged as near to 60 credits per semester as possible.
All optional module choice is subject to availability, timetabling, student number restrictions and students having taken appropriate pre-requisite modules.
4.4 Part D - Degree Modules
Code | Title | Weight | Semester | C/O |
WSD030 | Advanced Project | 50 | 1+2 | C |
WSD034 | Applying Management Theory | 10 | 1+2 | C |
WSD530 | Programming Multi/many-core Systems | 15 | 1 | C |
WSD506 | Digital Signal Processing | 15 | 1 | OA |
WSD509 | Communication Networks | 15 | 1 | OA |
WSD510 | Personal Radio Communications | 15 | 1 | OA |
WSD511 | Information Theory and Coding | 15 | 1 | OA |
WSD515 | Communication Channels | 15 | 1 | OA |
WSD568 | Sensors and Actuators for Control | 15 | 1 | OA |
WSD062 | Understanding Complexity | 15 | 2 | OA |
WSD508 | Digital Signal Processing for Software Defined Radio | 15 | 2 | OA |
WSD516 | Telecommunication Network Security | 15 | 2 | OA |
WSD517 | Mobile Network Technologies | 15 | 2 | OA |
WSD525 | Advanced Electronic Engineering Applications | 15 | 2 | OA |
WSD032 | Microwave Circuits Laboratory | 15 | 1+2 | OB |
XXXXXX | Options from the University Catalogue | 30 | 1+2 | OC |
The optional modules listed oA are block taught in one week or two week long blocks, while those listed oB run over both semesters.
The option oC allows a free choice of modules worth 30 credits from the University Catalogue. This choice should be restricted to modules from Part C or D level, subject to the overall requirement for the Part that at least 90 credits should be from Part D level or above. The total of 120 credits should be arranged as near to 60 credits per semester as possible.
All optional module choice is subject to availability, timetabling, student number restrictions and students having taken appropriate pre-requisite modules.
4.5 Part I - Industrial or International training
For candidates who are registered for the Diploma in Industrial Studies (DIS) or the Diploma in International Studies (DIntS), Part I will be followed between Parts B and C or between Parts C and D and will be in accordance with the provisions of Regulation XI and Regulation XX.
5. Criteria for Progression and Degree Award
5.1 Criteria for programme progression
Progression from Part A to Part B, from Part B to Part C, from Part C to Part D will be subjected to the provisions set out in Regulation XX and in addition candidates must accumulate 120 credits and achieve an overall average of 55% in that part.
For candidates who commence study on the programme before October, 2016:
To progress from Part A to Part B, candidates must accumulate 100 credits from Part A, with no module mark less than 30% and obtain an average mark in Part A of at least 55%.
To progress from Part B to either Part C or Part I, (a period of professional training and/or study at an approved institution abroad, DIS or DIntS), candidates must accumulate 100 credits from Part B, with no module mark less than 30% and obtain an average mark in Part B of at least 55%.
To progress from Part C to either Part D or Part I, (a period of professional training and/or study at an approved institution abroad, DIS or DIntS), candidates must accumulate 100 credits from Part C, with no module mark less than 30% and obtain an average mark in Part C of at least 55%.
5.2 Degree award
To qualify for the award of the Degree of Master of Engineering, candidates must accumulate 100 credits from Part D, with no module mark less than 30%. In addition, candidates should normally obtain a mark of at least 50% in all modules with codes of the form WSD5xx taken in Part D.
6. Relative Weighting of Parts of the Programme for the Purposes of Final Degree Classification
A candidate's final degree classification will be determined on the basis of their performance in degree level Module Assessments at Parts B, C and D in accordance with the scheme set out in Regulation XX. The average percentage marks for each Part will be combined in the ratio Part B 15: Part C 42.5: Part D 42.5, to determine the final Programme Mark.