Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 222222
Loughborough University

Programme Specifications

Programme Specification

MSc Systems Engineering

Academic Year: 2019/20

This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if full advantage is taken of the learning opportunities that are provided.

This specification applies to delivery of the programme in the Academic Year indicated above. Prospective students reviewing this information for a later year of study should be aware that these details are subject to change as outlined in our Terms and Conditions of Study.

This specification should be read in conjunction with:

  • Summary
  • Aims
  • Learning outcomes
  • Structure
  • Progression & weighting

Programme summary

Awarding body/institution Loughborough University
Teaching institution (if different)
Owning school/department Wolfson School of Mechanical, Electrical and Manufacturing Engineering
Details of accreditation by a professional/statutory body

Institution of Engineering and Technology (IET)
Royal Aeronautical Society (RAeS)

Final award MSc/ PGDip / PGCert
Programme title Systems Engineering
Programme code WSPT57(Full-Time) WSPT07(Part-Time)
Length of programme 1 year full-time, 3 years (typical) part-time. Maximum period of part-time study is 8 years.
UCAS code
Admissions criteria

MSc Full time: http://www.lboro.ac.uk/WSPT57

MSc Part time: http://www.lboro.ac.uk/WSPT07

Date at which the programme specification was published Fri, 19 Jul 2019 16:50:27 BST

1. Programme Aims

The Master of Science programme in Systems Engineering aims to develop a thorough knowledge of the principles and techniques required for the application of the systems approach to multi-disciplinary and complex engineering problems.

The programme aims to develop:

  • Knowledge and technical expertise in application of systems principles to development of a range of technologies.
  • Deeper knowledge in specialist areas of Systems Engineering through elective modules.
  • Knowledge and practical experience of an integrated Systems Engineering approach to technology management.

2. Relevant subject benchmark statements and other external reference points used to inform programme outcomes:

  • UK Standard for Professional Engineering Competence; Engineering Technician, Incorporated Engineer and Chartered Engineer Standard, Engineering Council UK, 2013.
  • UK Standard for Professional Engineering Competence; The Accreditation of Higher Education Programmes, Engineering Council UK, 2013.
  • Subject Benchmark Statement: Engineering, The Quality Assurance Agency for Higher Education, February 2015
  • Master's degree characteristics, the Quality Assurance Agency for Higher Education, September 2015.

3. Programme Learning Outcomes

3.1 Knowledge and Understanding

On successful completion of this programme, students should be able to demonstrate knowledge and understanding of:

K1 Mathematical methods appropriate to systems engineering

K2 Principles of engineering science appropriate to systems engineering

K3 Principles of Information Technology and Communications appropriate to systems engineering

K4 Relevant codes of practice and regulatory frameworks

K5 Relevant operational practices and requirements for safe working

3.2 Skills and other attributes

a. Subject-specific cognitive skills:

On successful completion of this programme students should be able to

C1 Select and apply appropriate mathematical and/or computer-based methods for modelling and analysing practical and hypothetical engineering problems

C2 Model and analyse engineering systems, processes, components and products

C3 Develop engineering solutions to practical problems

C4 Integrate, evaluate and use information, data and ideas from a wide range of sources

C5 Develop new systems, processes, components or products by integrating ideas from a number of disciplines

b. Subject-specific practical skills:

On successful completion of this programme students should be able to:

P1 Use appropriate mathematical methods for modelling and analysing relevant engineering problems

P2 Use computational tools and packages (including programming languages where appropriate)

P3 Design systems, their components and processes

P4 Undertake testing of design ideas and analyse, evaluate and critique the results

P5 Search for and retrieve information, ideas and data from a variety of sources

P6 Manage a technical project and apply appropriate processes

P7 Produce technical reports, papers and diagrams

c. Key transferable skills:

On successful completion of this programme students should be able to

T1 Manipulate, sort and present data and information in appropriate forms

T2 Use evidence-based methods in the solution of complex problems

T3 Work with limited, incomplete and/or contradictory information to achieve a successful systems intervention

T4 Use an engineering approach to understand problems in unfamiliar situations in order to make to make purposeful systems interventions

T5 Be creative and innovative in problem solving

T6 Work effectively as part of a team

T7 Use a wide range of information and communications technologies

T8 Manage time and resources

T9 Communicate effectively orally, visually and in writing at an appropriate level

T10 Learn effectively, continuously and independently in a variety of environments

4. Programme structure

The following tables list the modules that comprise the programme. Five optional modules must be chosen.

Compulsory modules (Totalling 105 credits)

Semester 1 

Code

 Title

Credits

WSP062

Applied Systems Thinking

15

WSP072

Systems Architecture

15

WSP062 and WSP072 should be completed before students commence any optional modules.

Semester 2

Code

 Title

Credits

WSP085

Group Systems Project

15

WSP085 should be completed after all other modules with the exception of the Individual Project. 

WSP065

Individual Project

60

Optional modules (Totalling 75 credits)

Students must undertake a total of 75 credits of option modules as follows:  

  • 15 or 30 credits from Group A
  • 30 to 60 credits from Group B
  • no more than 15 credits from Group C in place of a module in Group B 

Group A - Select either one or to two 15 credit modules

Code

 Title

Credits

Semester

WSP068

Sensors and Actuators for Control

15

1

WSP462

Understanding Complexity

15

2

Group B - Select between two and four 15 credit modules depending upon choices made from Group A and Group C

Code

 Title

Credits

Semester

WSP066

Systems Design  

15

1

WSP069

Innovation and Entrepreneurship in Engineering

15

1

WSP067

Validation and Verification

15

2

WSP071

Holistic Engineering

15

2

WSP076

Modelling Simulation and Visualization for Engineering

15

2

WSP460

Engineering and Managing Capability

15

2

Group C – Students may undertake one 15 credit module in place of one module from Group B 

Code

 Title

Credits

Semester

WSP409

Engineering for Sustainable Development

15

1

WSP600

Manufacturing Processes Automation

15

1

WSP637

Additive Manufacturing

15

1

WSP331

Computer Aided Engineering

15

1

WSP415

Engineering Design Methods

15

1

WSP006

Digital Signal Processing

15

1

WSP009

Communication Networks

15

1

WSP233

Lean and Agile Manufacture

15

2

WSP016

Telecommunications Network Security

15

2

All module choice is subject to availability, timetabling, student number restrictions and students having taken appropriate pre-requisite modules.

5. Criteria for Progression and Degree Award

5.1 In order to be eligible for the award, candidates must satisfy the requirements of Regulation XXI.

5.2 Provision will be made in accordance with Regulation XXI for candidates who have the right of re-examination to undergo re-assessment in the University’s special assessment period.

 

6. Relative Weighting of Parts of the Programme for the Purposes of Final Degree Classification

Related links

Prospective students

Image of a University homepage screengrab

Information on studying at Loughborough University, including course information, facilities, and student experience.

Find out more »

Decorative

How to print a Programme Specification

1. Select programme specification
2. Save specification as a PDF
3. Print PDF