Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 222222
Loughborough University

Programme Specifications

Programme Specification

MSc Advanced Engineering

Academic Year: 2016/17

This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if full advantage is taken of the learning opportunities that are provided.

This specification applies to delivery of the programme in the Academic Year indicated above. Prospective students reviewing this information for a later year of study should be aware that these details are subject to change as outlined in our Terms and Conditions of Study.

This specification should be read in conjunction with:

  • Summary
  • Aims
  • Learning outcomes
  • Structure
  • Progression & weighting

Programme summary

Awarding body/institution Loughborough University
Teaching institution (if different)
Owning school/department Wolfson School of Mechanical, Electrical and Manufacturing Engineering
Details of accreditation by a professional/statutory body
Final award MSc/ PGDip / PGCert
Programme title Advanced Engineering
Programme code MMPT01
Length of programme This part-time programme is based at Loughborough and is studied over a period of not more than eight years. The programme comprises 120 credits of taught modules and a 60 credit individual project. The maximum period of part-time study for a Diploma is 5 years or 3 years for a Certificate. Each candidate is required to negotiate with the Programme Director a balanced and appropriate combination of modules that takes account of the candidate’s previous experience.
UCAS code
Admissions criteria

http://www.lboro.ac.uk/study/postgraduate/courses/departments/mecheng/advancedengineering/

Date at which the programme specification was published Thu, 15 Sep 2016 10:57:52 BST

1. Programme Aims

  • The aim of the programme is to provide a postgraduate programme to give broadening and deepening modules in a field of engineering relevant to and tailored to each student’s working needs.
  • Postgraduate students are intended to receive appropriate grounding in relevant engineering skills and their practical assessment according to industrial needs.

2. Relevant subject benchmark statements and other external reference points used to inform programme outcomes:

  • Loughborough University Periodic Programme Review (Quadrennial Review)

  • Loughborough University Annual Programme Review 

  • UK Quality Assurance Agency for Higher Education (QAA) – ‘Subject Benchmark Statement for Engineering’, (Feb.2015) and ‘Framework of Higher Education Qualifications’, (Aug.2008) 

  • Engineering Council (UK). ‘UK-SPEC, UK Standard for Professional Engineering Competence’, 3rd Edition, Jan.2014 

  • Engineering Council (UK). ‘The Accreditation of Higher Education Programmes’, 3rd Edition, May 2014 

  • Programme Accreditation Reports (Quinquennial) by professional institutions

3. Programme Learning Outcomes

3.1 Knowledge and Understanding

In line with the QAA ‘Subject Benchmark Statement for Engineering (2015)’  the programme learning outcomes listed here are sourced from the Engineering Councils publication ‘The Accreditation of Higher Education Programmes’ 3rd Edition, 2014.

Science and Mathematics (SM)

Engineering is underpinned by science and mathematics, and other associated disciplines, as defined by the relevant professional engineering institution(s). The main science and mathematical abilities will have been developed in an accredited engineering undergraduate programme.  Upon successful completion Masters Graduates will therefore have additionally:

A comprehensive understanding of the relevant scientific principles of the specialisation

A critical awareness of current problems and/or new insights most of which is at, or informed by, the forefront of the specialisation

Understanding of concepts relevant to the discipline, some from outside engineering, and the ability to evaluate them critically and to apply them effectively, including in engineering projects

Engineering Analysis (EA)

Engineering analysis involves the application of engineering concepts and tools to the solution of engineering problems. The main engineering analysis abilities will have been developed in an accredited engineering undergraduate programme. Upon successful completion Masters Graduates will therefore have additionally:

Ability both to apply appropriate engineering analysis methods for solving complex problems in engineering and to assess their limitations

Ability to use fundamental knowledge to investigate new and emerging technologies

Ability to collect and analyse research data and to use appropriate engineering analysis tools in tackling unfamiliar problems, such as those with uncertain or incomplete data or specifications, by the appropriate innovation, use or adaptation of engineering analytical methods

Design (D)

Design at this level is the creation and development of an economically viable product, process or system to meet a defined need. It involves significant technical and intellectual challenges and can be used to integrate all engineering understanding, knowledge and s kills to the solution of real and complex problems. The main design abilities will have been developed in an accredited engineering undergraduate programme. Upon successful completion Masters Graduates will have additionally:

Knowledge, understanding and skills to work with information that may be incomplete or uncertain, quantify the effect of this on the design and, where appropriate, use theory or experimental research to mitigate deficiencies

Knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations

Ability to generate an innovative design for products, systems, components or processes to fulfil new needs

Economic, legal, social, ethical and environmental context (EL)

Engineering activity can have impacts on the environment, on commerce, on society and on individuals. Successful Graduates therefore have the skills to manage their activities and to be aware of the various legal and ethical constraints under which they are expected to operate, including:

Awareness of the need for a high level of professional and ethical conduct in engineering

Awareness that engineers need to take account of the commercial and social contexts in which they operate

Knowledge and understanding of management and business practices, their limitations, and how these may be applied in the context of the particular specialisation

Awareness that engineering activities should promote sustainable development and ability to apply quantitative techniques where appropriate

Awareness of relevant regulatory requirements governing engineering activities in the context of the particular specialisation

Awareness of and ability to make general evaluations of risk issues in the context of the particular specialisation, including health & safety, environmental and commercial risk

3.2 Skills and other attributes

a. Subject-specific cognitive skills:

Refer to Section 3. above.

b. Subject-specific practical skills:

Engineering Practice (P)

The main engineering practice abilities will have been developed in an accredited engineering undergraduate programme. Successful Masters Graduates will have to demonstrate application of these abilities where appropriate and additional engineering skills which can include:

Advanced level knowledge and understanding of a wide range of engineering materials and components

A thorough understanding of current practice and its limitations, and some appreciation of likely new developments

Ability to apply engineering techniques, taking account of a range of commercial and industrial constraints

Understanding of different roles within an engineering team and the ability to exercise initiative and personal responsibility, which may be as a team member or leader

c. Key transferable skills:

 

Additional general skills (G)

 Successful Graduates will have developed transferable skills, additional to those set out in the other learning outcomes that will be of value in a wide range of situations, including the ability to:

 Apply their skills in problem solving, communication, information retrieval, working with others, and the effective use of general IT facilities

 Plan self-learning and improve performance, as the foundation for lifelong learning/CPD

 Monitor and adjust a personal programme of work on an on-going basis

 Exercise initiative and personal responsibility, which may be as a team member or leader

4. Programme structure

4.1 Students are required to select taught modules from the list below. Students are responsible for consulting with the programme administrator to ensure their selected modules do not clash. Modules denoted by * are provided through distance learning. All other modules are taught in one-week blocks.

 

Module Code
Title
Module Weight

School  of Electronic & Electrical Engineering 

ELP006

Fundamentals of Digital Signal Processing

15

ELP008

Digital Signal Processing for Software Radio

15

ELP009

Communication Networks                     

15

ELP010

Personal Radio Communications           

15

ELP011

Information Theory and Coding

15

ELP013

Quality Aware Networks

15

ELP015

Communications Channels        

15

ELP016

Communication Network Security and E-Commerce

15

ELP017

Mobile Networks

15

ELP032

Integration of Renewables                     

15

ELP033

Solar Power 1                                      

15

ELP034

Wind Power 1                                       

15

ELP035

Water Power                                        

15

ELP036

BioMass                                              

15

ELP062

Systems Thinking

15

ELP066

Systems Design

15

ELP067

Validation and Verification

15

ELP069

Innovation and Entrepreneurship for Engineers

15

ELP460

Engineering and Management of Capability

15

 

WolfsonSchool of Mechanical & Manufacturing Engineering

MMP102

Experimental Mechanics

15

MMP103

Simulation of Advanced Materials & Processes

15

MMP104

Automation & Virtual Engineering

15

MMP130

Structural Analysis

15

MMP233

Lean and Agile Manufacture                 

15

MMP205*

Lean and Agile Manufacture                  

10

MMP237

Engineering Management & Business Studies

15

MMP250*

Marketing for Engineers

10

MMP256*

Quality Management

10

MMP260*

Business Strategy                                

10

MMP263*

Operations Management

10

MMP330

Product Information Systems - Product Lifecycle Management

15

MMP331

Computer Aided Engineering                

15

MMP403*

Design of Machine Elements

10

MMP405

Engineering Design Methods

15

MMP409

Sustainable Development: The Engineering Context

15

MMP420

Lifecycle Assessment

15

MMP421

Environmental Management Standards, Legislation & Directives

15

MMP422

Waste Management & Product Recovery

15

MMP423

Sustainable Energy Systems

15

MMP434

Product Design and Human Factors

15

MMP437

Sustainable Product Design

15

MMP438

The Innovation Process & Project Management

15

MMP455*

Engineering Design Methods

10

MMP460*

Design for Assembly

10

MMP600

Adv Manufacturing Processes & Technology

15

MMP637

Additive Manufacturing

15

MMP660*

Adv Manufacturing Processes & Technology

10

MMP830

Thermofluids

15

Department of Materials

MPP505

Plastics Processing Technology

15

MPP507

Polymer Characterisation

15

MPP508

Rubber Compounding and Processing

15

MPP558

Sustainable Use of Materials

15

MPP559

Adhesive Bonding

15

MPP608*

Rubber Compounding and Processing

15

MPP658*

Sustainable Use of Materials

15

MPP601*

Polymer Properties

15

MPP602*

Polymer Science

15

MPP603*

Polymerisation and Polymer Blends

15

MPP606*

Plastics and Composites Applications

15

MPP652*

Design with Engineering Materials

15

MPP653*

Surface Engineering

15

MPP654*

Ceramics: Processing and Properties

15

MPP655*

Metals: Processing and Properties

15

MPP660*

Marketing

15

* denotes module studied through distance learning.

The School reserves the right to offer or withdraw any module or amend the list of modules. Not all modules may be available in any one session. Students may take any other modules from the University’s postgraduate catalogue of modules subject to their availability and the agreement of the Programme Director. 

4.2          MSc Project Module

All part-time students take project module MMP504. Project submission should normally be within three years of registration on the project module. 

Code

Subject

Modular Weight

MMP504

Major Project (part-time)

60

 

5. Criteria for Progression and Degree Award

5.1 In order to be eligible for the award, candidates must satisfy the requirements of Regulation XXI.

5.2 Candidates who have the right of re-assessment in a module may be offered an opportunity to be re-assessed in the University's special assessment period.

 

6. Relative Weighting of Parts of the Programme for the Purposes of Final Degree Classification

Related links

Prospective students

Image of a University homepage screengrab

Information on studying at Loughborough University, including course information, facilities, and student experience.

Find out more »

Decorative

How to print a Programme Specification

1. Select programme specification
2. Save specification as a PDF
3. Print PDF