Programme summary
Awarding body/institution |
Loughborough University |
Teaching institution (if different) |
|
Owning school/department |
School of Electronic, Electrical and Systems Engineering - pre-2016 |
Details of accreditation by a professional/statutory body |
- Institution of Engineering and Technology
- Institute of Measurement and Control
- Energy Institute
For students joining the programme in 2009 or earlier, all module combinations satisfy the requirements at BEng level for accreditation by the Institution of Engineering and Technology, the Institute of Measurement and Control and the Energy Institute.
For students joining the programme in 2010 or later, all module combinations satisfy the requirements for accreditation by the Institution of Engineering and Technology and the Institute of Measurement and Control, however the Energy Institute requires the following specific programme content:
Code
|
Title
|
Modular Weight
|
ELB012
|
Renewable Energy Systems Analysis
|
15
|
ELC003
|
Renewable Energy Source
|
15
|
ELC022
|
Power Electronic for Renewables
|
15
|
Such accreditation provides a partial fulfilment of the educational requirements for CEng. |
Final award |
BEng/ BEng+DIS |
Programme title |
Electronic and Electrical Engineering |
Programme code |
ELUB10 |
Length of programme |
The duration of the programme is 6 semesters or 8 semesters if taken with the Diploma in Industrial Studies.If the industrial training is undertaken, as required for the award of the Diploma, this will occur between Parts B and C but only after successful completion of Part B.
The programme is only available on a full-time basis.
|
UCAS code |
H600, H604 |
Admissions criteria |
http://www.lboro.ac.uk/study/undergraduate/courses/departments/eese/electronicandelectricalengineering/ |
Date at which the programme specification was published |
Tue, 28 Jul 2015 10:52:29 BST |
1. Programme Aims
The BEng in Electronic and Electrical Engineering aims to:
- provide a programme of study producing graduates that are attractive to the electronic and electrical engineering industry;
- ensure a high quality educational experience in which knowledge and skills are developed, to an appropriate level, as preparation for a career in that industry;
- provide a broad, well-balanced degree programme in which analytical skills are developed over the full range of core subject areas. Equipping graduates from the programme for employment across all fields appropriate to electronic and electrical engineering;
- support students ability to apply their knowledge and skills effectively to solve engineering problems;
- develop analytical and transferable skills to enable students to gain employment in a wide variety of professions, thus helping graduates of the programme to make a valuable contribution to society;
- maintain an up-to-date curriculum that is responsive to developments both in higher education and in industry, and in a manner which is informed by the School’s research activities;
- develop students skills in teamwork, self–learning, planning and communication.
2. Relevant subject benchmark statements and other external reference points used to inform programme outcomes:
UK Standard for Professional Engineering Competence: Engineering Technician, Incorporated Engineer and Chartered Engineer Standard, Engineering Council UK, 3rd edition, 2013.
UK Standard for Professional Engineering Competence: The Accreditation of Higher Education Programmes, Engineering Council UK, 3rd edition, 2014.
Guidance Note on Academic Accreditation, Engineering Council UK, 2014.
IET Learning Outcomes Handbook for BEng and MEng Degree Programmes, October 2009.
The UK Quality Code for Higher Education. The Quality Assurance Agency for Higher Education, April 2012.
Subject Benchmark Statement: Engineering, The Quality Assurance Agency for Higher Education, November 2010.
Beyond the honours degree classification; The Burgess Group final report, October 2007.
Proposals for national arrangements for the use of academic credit in higher education in England, Final report of the Burgess Group, December 2006.
The report of the EAB Accreditation Panel, September 2010 (the panel included representatives of the IET, InstMC, RAeS and EI).
3. Programme Learning Outcomes
3.1 Knowledge and Understanding
On successful completion of this programme, students should be able to demonstrate a knowledge and understanding of:
- essential mathematical methods appropriate to electronic and electrical engineering;
- essential principles of engineering and/or systems science appropriate to electronic and electrical engineering;
- the role of Information Technology and communications;
- essential design principles appropriate to relevant components, equipment and associated software;
- relevant common engineering materials and components;
- management and business practices appropriate to engineering industries;
- relevant codes of practice and regulatory frameworks;
- basic operational practices and requirements for safe operation relevant to electronic and electrical engineering;
- the professional and ethical responsibilities of engineers.
3.2 Skills and other attributes
a. Subject-specific cognitive skills:
On successful completion of this programme, students should be able to demonstrate:
- an understanding of standard mathematical and/or computer based methods for modelling and analysing a range of practical and hypothetical engineering problems, and the essential principles of modelling and analysing routine engineering systems, processes, components and products;
- a competence in defining and solving practical engineering problems;
- the ability to integrate, evaluate and use information, data and ideas from a range of sources in to project work;
- the ability to apply systems processes in a range of different engineering contexts.
b. Subject-specific practical skills:
On successful completion of this programme, students should be able to:
- use conventional laboratory equipment and relevant test and measurement equipment in a safe manner;
- use computational tools and packages (including programming languages where appropriate) in familiar situations;
- design, and where appropriate construct, systems, components or processes
- search for and retrieve information, ideas and data from a variety of sources
- manage a project and produce technical reports, papers, diagrams and drawings
c. Key transferable skills:
On successful completion of this programme, students should be able to:
- demonstrate skills in problem solving, communication, group working, use of general software and information retrieval, which act as a foundation for life-long learning;
- use an engineering and/or systems approach to the solution of problems;
- use appropriate management tools including management of time and resources;
- select and analyse appropriate evidence/data to solve engineering problems;
- work independently or in a team.
4. Programme structure
These Programme Specifications apply to the conduct of the programme in the 2015-16 session and should not be construed as being relevant to any other session. These Programme Specifications may be subject to change from time to time. Notice of change will be given by the School responsible for the programme.
In the following tables, ‘c’ indicates a compulsory module and ‘o’ indicates an optional module. The optional modules ‘oA’, ‘oB’ and ‘oC’ should be considered along with the text following the table in which they appear.
4.1 Part A - Introductory Modules
Code
|
Module Title
|
Modular Weight
|
Semester
|
|
ELA005
|
Electromagnetism A
|
10
|
2
|
c
|
ELA004
|
Signals and Systems
|
10
|
1+2
|
c
|
ELA007
|
Introduction to Systems Engineering for Projects
|
20
|
1+2
|
c
|
MAA303
|
Mathematics A
|
20
|
1+2
|
c
|
ELA001
|
Circuits
|
20
|
1+2
|
c
|
ELA003
|
Electronics A
|
20
|
1+2
|
c
|
ELA010
|
Programming and Software Design
|
20
|
1+2
|
c
|
The 20 credit module ELA001 Circuits is taught over both semesters, 2/3 of the module is taught in Semester 1 and 1/3 in Semester 2.
4.2 Part B - Degree Modules
Code
|
Module title
|
Modular weight
|
Semester
|
|
ELB002
|
Communications
|
15
|
1+2
|
c
|
ELB003
|
Electromechanical Systems
|
15
|
1+2
|
c
|
ELB004
|
Control System Design
|
15
|
1+2
|
c
|
ELB010
|
Electronics B
|
20
|
1+2
|
c
|
ELB013
|
Engineering Project Management
|
20
|
1+2
|
c
|
MAB303
|
Mathematics B
|
20
|
1+2
|
c
|
ELB012
|
Renewable Energy Systems Analysis
|
15
|
1+2
|
o
|
ELB014
|
Software Engineering
|
15
|
1+2
|
o
|
ELB019
|
Computer Architecture
|
15
|
1+2
|
o
|
MMB140
|
Mechanics
|
15
|
1+2
|
o
|
Students should take one of the optional (o) modules indicated.
4.3 Part C - Degree Modules
Code
|
Module title
|
Modular weight
|
Semester
|
|
ELC008
|
Business Management
|
15
|
1+2
|
c
|
ELC025
|
Project
|
30
|
1+2
|
c
|
ELB014
|
Software Engineering
|
15
|
1+2
|
oA
|
ELB019
|
Computer Architecture
|
15
|
1+2
|
oA
|
MMB140
|
Mechanics
|
15
|
1+2
|
oA
|
ELC002
|
Principles of Digital Communications
|
15
|
1+2
|
oB
|
ELC003
|
Renewable Energy Sources
|
15
|
1+2
|
oB
|
ELC004
|
Computer Networks
|
15
|
1+2
|
oB
|
ELC006
|
Fast Transient Sensors
|
15
|
1+2
|
oB
|
ELC007
|
Electromagnetism C
|
15
|
1+2
|
oB
|
ELC013
|
Electromagnetic Compatibility
|
15
|
1+2
|
oB
|
ELC014
|
Biophotonics Engineering
|
15
|
1+2
|
oB
|
ELC018
|
Real-Time Software Engineering
|
15
|
1+2
|
oB
|
ELC022
|
Power Electronics for Renewables
|
15
|
1+2
|
oB
|
ELC030
|
Bioelectricity – Fundamentals and Applications
|
15
|
1+2
|
oB
|
ELC039
|
Microwave Communication Systems
|
15
|
1+2
|
oB
|
ELC041
|
Digital and State Space Control
|
15
|
1+2
|
oB
|
ELC042
|
Electrical Machine Modelling
|
15
|
1+2
|
oB
|
ELC054
|
Electronic System Design with FPGAs
|
15
|
1+2
|
oB
|
ELC055
|
Digital Interfacing and Instrumentation
|
15
|
1+2
|
oB
|
ELC056
|
Fundamentals of Digital Signal Processing
|
15
|
1+2
|
oB
|
DSC502
|
Human Factors in Systems Design
|
15
|
1+2
|
oB
|
MPC022
|
Materials Properties and Applications
|
15
|
1+2
|
oB
|
Option modules with a total weight of 75 credits should be chosen.
Options listed as oA will normally continue to be delivered throughout the Semester 1 examination period. The options listed as oB will normally be suspended during the Semester 1 examination period. No more than two oA modules should be chosen and only where they were not taken at Part B.
All module choice is subject to availability, timetabling, prerequisite, preclusive and student number restrictions. Any difficulties arising from optional module choice will not normally be considered as the basis of a claim for impaired performance.
Modules which are indicated as being taught in both Semester 1 and Semester 2 have elements of assessment in each semester however examinations for these modules normally occur during the Semester 2 examination period. Modules indicated as being taught in a single semester are assessed entirely within that semester.
4.4 Part I - Industrial training
Following successful completion of Part B, candidates registered for the Diploma in Industrial Studies (DIS) shall undertake a period of at least 45 weeks at a placement organized through or with the consent of the School of Electronic, Electrical and Systems Engineering. The assessment for the award of the Diploma in Industrial Studies (DIS) is by a dissertation and a poster.
Participation in industrial training is subject to School approval, and all arrangements must be in accordance with University Regulation XI.
5. Criteria for Progression and Degree Award
5.1 In order to progress from Part A to Part B and from Part B to Part I or Part C and to be eligible for the award of an Honours degree, candidates must not only satisfy the minimum credit requirements set out in Regulation XX but also:
5.1.1 In order to progress from Part A to Part B, candidates must obtain at least 100 credits from Part A together with at least 30% in all remaining modules.
5.1.2 In order to progress from Part B to either Part C or Part I (a period of professional training required for the DIS award), candidates must obtain at least 100 credits from Part B with at least 30% in all remaining modules.
5.1.3 To qualify for the award of Bachelor of Engineering candidates must acheive at least 40% in the project module ELC025. Where applicable, the Advanced Project ELD030 is an acceptable alternative to ELC025.
5.2 Re-assessment
Provision will be made in accordance with Regulation XX for candidates who have the right of re-assessment to undergo re-assessment in the University’s Special Assessment Period (unless modules unavailable for re-assessment in the Special Assessment Period are involved).
It should be noted however that
(i) Where a candidate has achieved fewer than 60 credits in any part of the programme, re-assessment in that Part is not permitted within the Special Assessment Period.
(ii) In accordance with Regulation XX, paragraph 40, individual project work for ELC025 obtaining a module mark between 30% and 39% inclusive may be revised and resubmitted for re-assessment. At the discretion of the Programme Board such re-assessment may be allowed in the Special Assessment Period.
(iii) Coursework re-assessment for exercises undertaken in groups and/or involving constructional, experimental or laboratory work may not be available during the Special Assessment Period.
5.3 Criteria for progression onto an MEng programme
5.3.1 Any candidate who has achieved, at the first attempt, 100 credits, no module marks less than 30% and an overall average mark of at least 55% from modules taken in Part A would normally be allowed to transfer to Part B of any MEng programme in the School of Electronic, Electrical and Systems Engineering should they so wish.
5.3.2 Any candidate who has achieved, at the first attempt, 100 credits, no module marks less than 30% and an overall average mark of at least 55% from modules taken in Part B would normally be allowed to transfer to Part C or Part I of any MEng programme in the School of Electronic, Electrical and Systems Engineering should they so wish.
Such transfers are subject to the prerequisite requirements of the MEng programme.
6. Relative Weighting of Parts of the Programme for the Purposes of Final Degree Classification
Candidates’ final degree classification will be determined on the basis of their performance in degree level Module Assessments at Parts B and C in accordance with the scheme set out in Regulation XX. The average percentage marks for each Part will be combined in the ratio Part B 20: Part C 80 to determine the final Programme Mark.