Programme Specification
MEng (Hons) Materials Engineering
Academic Year: 2015/16
This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if full advantage is taken of the learning opportunities that are provided.
This specification applies to delivery of the programme in the Academic Year indicated above. Prospective students reviewing this information for a later year of study should be aware that these details are subject to change as outlined in our Terms and Conditions of Study.
This specification should be read in conjunction with:
- Reg. XX (Undergraduate Awards) (see University Regulations)
- Module Specifications
- Summary
- Aims
- Learning outcomes
- Structure
- Progression & weighting
Programme summary
Awarding body/institution | Loughborough University |
Teaching institution (if different) | |
Owning school/department | Department of Materials |
Details of accreditation by a professional/statutory body | Institute of Materials, Minerals and Mining |
Final award | MEng/ MEng + DIS / MEng + DIntS |
Programme title | Materials Engineering |
Programme code | MPUM01 |
Length of programme | The duration of the programme is eight semesters, or ten semesters if students undertake industrial training leading to the award of the Diploma in Industrial Studies, or study at a University abroad leading to the award of the Diploma in International Studies.. These normally occur between Part B and Part C. |
UCAS code | J502, J503 |
Admissions criteria | http://www.lboro.ac.uk/study/undergraduate/courses/departments/materialsengineering/materialsengineering/ |
Date at which the programme specification was published | Fri, 18 Sep 2015 20:13:47 BST |
1. Programme Aims
- To provide an accredited honours degree programme in the field of materials engineering which satisfies the needs of industry for graduates of outstanding ability who have a very strong academic background with especially outstanding business and interactive skills.
- Greater in-depth knowledge of materials engineering will be included compared with the BEng counterpart programme and we aim to graduate high calibre materials engineers equipped with skills required to play a leading, technical role at an executive level.
- To encourage students to manage their own learning, communicate effectively and make use of primary source materials.
2. Relevant subject benchmark statements and other external reference points used to inform programme outcomes:
- QAA Framework for Higher Education Qualifications
- QAA Benchmark Statements for Materials
- Institute of Materials, Minerals and Mining Guidelines for Accreditation
3. Programme Learning Outcomes
3.1 Knowledge and Understanding
On successful completion of the programmes, graduates should be able to demonstrate knowledge and understanding of:
- Relevant mathematical methods and principles of materials science as applied to materials engineering;
- A number of specialist materials topics connected with metals, ceramics, polymers, and composites;
- The role of information technology and library resources in providing support for materials engineers;
- Engineering principles relevant to materials selection;
- The materials and engineering aspects of design;
- The professional and engineering responsibilities of materials engineers;
- A systematic understanding of knowledge, and a critical awareness of current problems and/or new insights, much of which is at the forefront of materials engineering practice.
3.2 Skills and other attributes
a. Subject-specific cognitive skills:
On successful completion of this programme student should be able to:
- Select and identify an appropriate material and manufacturing route for the design of a component;
- Utilise materials engineering principles to develop new materials/processing routes for improved performance of engineering systems;
- Solve materials engineering problems, and, where appropriate, propose new hypotheses;
- Select and apply appropriate IT tools to a variety of materials problems;
- Select materials from an environmentally appreciative viewpoint;
- Analyse materials aspects of components;
- Interpret numerical data and apply sophisticated mathematical methods to the analysis of materials engineering problems.
b. Subject-specific practical skills:
On successful completion of the programmes, students should be able to:
- Use, and have a comprehensive understanding of, appropriate mechanical testing, corrosion testing, optical and electron metallographic, and chemical analysis methods for the study of materials;
- Manipulate systems for the processing of polymers, ceramics and metals;
- Use appropriate computer software for design and modelling exercises;
- Evaluate and present practical data in a format that shows originality in the application of knowledge, together with a practical understanding of how established techniques are used to create and interpret materials engineering knowledge;
- Explain experimental results in terms of theoretical mechanisms and concepts;
- Compile clear and well-structured technical reports;
- Acquire and use sources of information appropriately;
- Demonstrate project management skills.
c. Key transferable skills:
On successful completion of the programmes, students should be able to:
- Organise and manage time and resources effectively;
- Apply constructive, creative, and structured approaches to complex problem solving;
- Exercise the independent learning ability required for continuing professional development;
- Make decisions in complex and unpredictable situations;
- Work effectively, both as part of a team and/or independently;
- Organise and manage time and resources effectively; for short-term and longer-term commitments;
- Possess skills needed to communicate effectively through written, graphical, inter-personal, and presentation media;
- Demonstrate a high level of numeracy; appropriate to the cognitive skills required;
- Compile clear and well-structured technical reports;
- Acquire and use sources of information appropriately;
- Demonstrate project management skills;
- To plan, monitor and record personal, educational and career development issues using the fast track route towards chartered status.
4. Programme structure
4.1 Part A – Introductory Modules
4.1.1 Compulsory modules (total module weight 120)
For students entering Part A from 2014
Code |
Semester |
Title |
Modular Weight |
MPA201 |
1 |
Structure and Properties of Materials |
10 |
MPA202 |
1 and 2 |
Experimentation and Practical Skills |
20 |
MPA203 |
1 and 2 |
CAD and Engineering Drawing |
10 |
MPA204 |
1 and 2 |
Engineering Analysis |
10 |
MPA205 |
1 |
Thermodynamics and Phase Equilibria |
10 |
MPA206 |
2 |
Introduction to Metal Processing |
10 |
MPA207 |
2 |
Mechanics for Materials 1 |
10 |
MPA210 |
1 |
Introduction to Product Design |
10 |
MAA101 |
1 |
Mathematics for Materials 1 |
10 |
MAA201 |
2 |
Mathematics for Materials 2 |
10 |
BSA525 |
1 |
Introduction to Accounting |
10 |
For students entering Part A before 2014
Code |
Semester |
Title |
Modular Weight |
MPA101 |
1 and 2 |
Skills for Materials |
20 |
MPA102 |
1 and 2 |
Experimentation |
20 |
MPA103 |
1 and 2 |
Introduction to Materials |
20 |
MPA104 |
1 and 2 |
Introduction to Design and Project Management |
10 |
MPA105 |
2 |
Thermodynamics and Phase Equilibria |
10 |
MPA108 |
2 |
Mechanics for Materials |
10 |
MAA101 |
1 |
Mathematics for Materials 1 |
10 |
MAA201 |
2 |
Mathematics for Materials 2 |
10 |
BSA526 |
2 |
Accounting for Managers |
10 |
4.2 Part B – Degree Modules
4.2.1 Compulsory modules (total module weight 120)
For students entering Part A from 2014
MPB201 |
1 |
Structures and Properties of Polymers |
10 |
MPB203 |
2 |
Polymers: Processing |
10 |
MPB204 |
2 |
Ceramics: Processing and Properties |
10 |
MPB205 |
1 and 2 |
Experimental Skills |
10 |
MPB206 |
1 |
Engineering Alloys |
10 |
MPB208 |
1 |
Fracture Mechanics of Materials |
10 |
MPB209 |
2 |
Advanced Materials Characterisation |
10 |
MPB210 |
1 |
Group Design Project |
10 |
MAB101 |
1 |
Maths for Materials 3 |
10 |
MAB206 |
2 |
Statistics |
10 |
BSB560 |
1 |
Principles of Marketing |
10 |
CGB018 |
2 |
Plant Engineering |
10 |
For students entering Part A before 2014
Code |
Semester |
Title |
Modular Weight |
MPB102 |
1 and 2 |
Processing and Structure of Polymers and Composites |
20 |
MPB103 |
1 and 2 |
Materials Characterisation and Mechanics |
20 |
MPB104 |
2 |
Advanced Materials Characterisation |
10 |
MPB105 |
2 |
Electrochemical Technology |
10 |
MPB109 |
1 |
Product Design |
10 |
MPB204 |
2 |
Ceramics: Processing and Properties |
10 |
MPB206 |
1 |
Engineering Alloys |
10 |
BSB560 |
1 |
Principles of Marketing |
10 |
MAB101 |
1 |
Mathematics for Materials 3 |
10 |
MAB206 |
2 |
Statistics |
10 |
4.3 Part I – Diploma in Industrial Studies and Diploma in International Studies Modules
Code |
Semester |
Title |
Modular Weight |
MPI001 |
1 and 2 |
Industrial Training Placement (DIS, non-credit bearing) |
120 |
MPI002 |
1 and 2 |
Overseas University Placement (DIntS, non-credit bearing |
120 |
4.3.1 Eight Semester Programme
In accordance with Regulation XI, students will undertake an approved placement or study abroad leading to the Diploma of Industrial Studies, if following Module MPI001, or leading to the Diploma in International Studies, if following Module MPI002. Participation in a placement or study abroad is subject to Departmental approval and satisfactory academic performance during Parts A and B.
4.4 Part C – Degree Modules
4.4.1 Compulsory modules (total module weight 100)
For students entering Part A from 2014
Code |
Semester |
Title |
Modular Weight |
MPC101 |
1 |
Sustainability, Recycling and Environmental Is sues |
10 |
MPC106 |
1 |
Electrochemical Technology |
10 |
MPC108 |
2 |
Surface Engineering |
10 |
MPD110 |
1 and 2 |
Project |
40 |
MPC111 |
1 |
Advanced Principles of Materials |
10 |
MPC114 |
1 |
Design and Manufacture of Composite Materials |
10 |
BSC144 |
2 |
Project Management |
10 |
For students entering Part A before 2014
Code |
Semester |
Title |
Modular Weight |
MPC101 |
1 |
Sustainability, Recycling and Environmental Issues |
10 |
MPC102 |
1 |
Fracture and Failure |
10 |
MPC108 |
2 |
Surface Engineering |
10 |
MPC111 |
1 |
Advanced Principles of Materials |
10 |
MPC114 |
1 |
Design and Manufacture with Composite Materials |
10 |
MPD110 |
1 and 2 |
Masters Project |
40 |
BSC144 |
2 |
Project Management |
10 |
4.4.2 Additional optional modules. Chosen options to be approved by the Progamme Director. Choose 20 credits from:
Code |
Semester |
Title |
Modular Weight |
BSB580 |
1 |
Operations Management |
10 |
EUL--- |
2 |
Language *with the approval of the Programme Director |
10 |
MMC206 |
2 |
New Product Development |
10 |
MMC910 |
1 |
Laser Processing of Materials |
10 |
MPC123 |
1 |
Automotive Crash Protection |
10 |
- - - - - - |
1 or 2 |
Other level 6 module from the University module catalogue with agreement of the Programme Director |
10 |
4.5 Part D – Degree Modules
4.5.1 Compulsory modules (total module weight 100)
For students entering Part A from 2014
Code |
Semester |
Title |
Modular Weight |
MPD101 |
1 and 2 |
Masters Group Project |
50 |
MPD102 |
2 |
Industrial Case Studies |
10 |
MPD105 |
1 |
Advanced Materials Dissertation |
10 |
MPP551 |
1 |
Advanced Characterisation Techniques |
15 |
MPP556 |
2 |
Materials Modelling |
15 |
For students entering Part A before 2014
Code |
Semester |
Title |
Modular Weight |
MPD101 |
1 and 2 |
Masters Group Project |
50 |
MPD102 |
2 |
Industrial Case Studies |
10 |
MPD103 |
2 |
Tomorrow’s Materials |
10 |
MPP551 |
1 |
Advanced Characterisation Techniques |
15 |
MPP556 |
2 |
Materials Modelling |
15 |
4.5.2 Additional optional modules. Chosen options to be approved by the Programme Director. Choose 20 credits from:
Code |
Semester |
Title |
Modular Weight |
EUL--- |
1 or 2 |
Language *with the approval of the Programme Director |
10 |
MMC204 |
2 |
Management of the Human Resource |
10 |
MMC206 |
2 |
New Product Development (if not studied in Part C) |
10 |
MPD105 |
1 |
Advanced Materials Dissertation |
10 |
--- |
1 and 2 |
Up to 20 credits from level 7 modules from the University module catalogue |
10 |
5. Criteria for Progression and Degree Award
5.1 Criteria for Progression and Degree Award
In order to progress from Part A to Part B, from Part B to C and from C to D and to be eligible for the award of an extended Honours degree, candidates must not only satisfy the minimum credit requirements set out in Regulation XX but also:
- In order to progress in each Part students must obtain 120 credits together with an overall average of 55% for the Part.
5.2 Re-assessment
- Provision will be made in accordance with Regulation XX for candidates, who have the right of re-assessment in all parts of the programme, to undergo re-assessment in the University's Special Assessment Period (except where SAP-exempt modules are involved).
- Where a candidate has achieved fewer than 60 credits in a part of the programme, reassessment in the relevant part is not available to that candidate in the Special Assessment Period.
5.3 Criteria for candidates who do not receive permission to Progress or gain the award of a Degree
5.3.1 Any candidate who fails to achieve the criteria for progression from Part A to Part B shall have the opportunity to repeat Module Assessments in accordance with the provisions of Regulation XX in order to qualify to progress to Part B. Alternatively, the candidate registered on the MEng degree programme may elect to enter part B of the BEng degree programme in Materials Engineering provided that the candidate has achieved the criteria for progression required for that programme. Failure at re-assessment will not prejudice this permission to enter the BEng degree programme subsequently.
5.3.2 Any candidate who fails to achieve the criteria for progression from Part B to Part C shall have the opportunity to repeat Module Assessments in accordance with the provisions of Regulation XX in order to qualify to progress to Part C. Alternatively, the candidate registered on the MEng degree programme may elect to enter Part C of the BEng degree programme in Materials Engineering provided that the candidate has achieved the criteria for progression required for that programme. Failure at re-assessment will not prejudice this permission to enter the BEng degree programme subsequently.
5.3.3 Any candidate who fails to achieve the criteria for progression from Part C to Part D shall have the opportunity to repeat Module Assessments in accordance with the provisions of Regulation XX in order to qualify to progress to Part D. Any candidate who
(i) fails to meet the progression requirement to Part D after reassessment, or
(ii) having successfully completed Part C is unable to commence or complete Part D, or
(iii) having studied Part D fails to meet the requirements for the award of an MEng degree,
may be permitted, at the discretion of the Programme Board to register for those additional modules necessary to satisfy the regulations for the award of the degree of BEng in Materials Engineering. In such instances, the degree classification will correspond to the candidate’s achievements in Part B and C assessments and be determined on the basis of the weighting given for the BEng programme.
6. Relative Weighting of Parts of the Programme for the Purposes of Final Degree Classification
Candidate’s final degree classification will be determined on the basis of their performance in degree level Module Assessments in Parts B, C, and D in accordance with the scheme set out in Regulation XX. The average percentages for each Part will be combined in the ratio Part B 20 : Part C 40 : Part D 40 to determine the overall average percentage mark for the programme (the programme mark).