

Week 4: Differentiation

Solutions

1. $y = 2x^3 + 5x^2 - 7x + 10$ (a) Find $\frac{dy}{dx}$ **Solution:** $6x^2 + 10x - 7$ (b) Find the gradient of the curve when x = 2Solution: 37 2. $y = 4\sqrt{x} + \frac{1}{2x} + 10$ (a) Find $\frac{dy}{dx}$ **Solution:** $\frac{dy}{dx} = \frac{2}{\sqrt{2}} - \frac{1}{2x^2}$ or $\frac{dy}{dx} = 2x^{-\frac{1}{2}} - \frac{1}{2}x^{-2}$. (b) Find $\frac{d^2y}{dx^2}$ **Solution:** $\frac{d^2y}{dx^2} = -x^{-\frac{3}{2}} + x^{-3}$. 3. $y = x^3 - 4x^2 - 3x + 9$ (a) Find $\frac{dy}{dx}$ **Solution:** $3x^2 - 8x - 3$ (b) Find the range values of x for which y is increasing **Solution:** y is increasing when the gradient is positive, i.e. when $x < -\frac{1}{3}$ and x > 3. 4. Let $q(x) = 5x^2 + 4\sin(3x)$ Find q'(x)**Solution:** $g'(x) = 10x + 12\cos(3x)$. 5. Given that $f(x) = \frac{x}{(x+2)}$ find f'(x)(a) using the product rule, **Solution:** $f'(x) = x(-1)(x+2)^{-2} + (x+2)^{-1} = \frac{2}{(x+2)^2}$. (b) using the quotient rule. **Solution:** $\frac{dy}{dx} = \frac{x+2-x}{(x+2)^2} = \frac{2}{(x+2)^2}$. 6. $y = \frac{x^2}{x+4}$ Find y'(x)Solution: $\frac{x^2+8x}{(x+4)^2}$ 7. Differentiate with respect to x(a) $(x^2 - 4)^3$ **Solution:** $6x(x^2 - 4)^2$ (b) $2(3x^2+1)^6$ **Solution:** $72x(3x^2 + 1)^5$ (c) e^{x^2+3x} **Solution:** $(2x + 3)e^{x^2+3x}$